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Fluctuation-Dissipation Ratio in 
Three-Dimensional Spin Glasses 
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We present an analysis of the data on aging in the three-dimensional Edwards- 
Anderson spin-glass model with nearest-neighbor interactions, which is well 
suited for the comparison with a recently developed dynamical mean-field 
theory. We measure the parameter x(q) describing the violation of the relation 
among correlation and response functions implied by the fluctuation-dissipation 
theorem. 

KEY WORDS: Spin glasses; nonequilibrium dynamics; Monte Carlo 
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On experimental time scales spin glasses are out of equilibrium. 
Experiments have pointed out that "aging effects," i.e., the dependence of 
some measurable quantities on the time spent in the low-temperature phase 
after a quench, persist at least for times of the order of years. (11 The same 
kind of phenomena have been recorded in numerical simulations of various 
spin glass models (see ref. 2 for a review). 

A lot of activity has been devoted to understanding the origin of these 
phenomena with phenomenological approaches t3-61 and from the analysis 
of mean-field modelsJ 7-91 This last approach is rapidly evolving, and major 
progress has been made toward a mean-field theory of the off-equilibrium 
dynamics of spin glasses. In this note we want to compare some features of 
the mean-field theory of spin glasses with the more realistic three-dimen- 
sional Edwards-Anderson model. In mean-field theory (MFT) aging is 
associated with a phase transition, there is a high-temperature phase in 
which the systems equilibrate, and a low-temperature phase where the 
systems settle in an asymptotic off-equilibrium state. 
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On the time scales we can reach we cannot certainly claim that the 
system has reached an asymptotic behavior, neither we can exclude a cross- 
over from aging to equilibrium dynamics for very long times. The question 
whether aging in a 3D system is really asymptotic or gradually disappears, 
although fundamental in principle, may not be the most relevant one from 
an experimental point of view. 

We compare the behavior of finite time in 3D systems with the predic- 
tions of the mean-field theory. Among these, we will focus on a systematic 
analysis of the violations of the fluctuation-dissipation theorem (FDT). The 
FDT cannot hold in a nonequilibrium situation, where the probability dis- 
tribution for the spin configurations is time dependent (see the discussion 
in ref. 10). The fundamentally new idea developed in refs. 7-9 is that a 
quantitative analysis of this violation could reveal a deeper insight into 
long-time off-equilibrium properties of spin glasses. 

In spin-glass dynamics crucial quantities of interest are the spin 
autocorrelation function C(t, s) and its associated response function G(t, s), 

C(t, s)= [ ( Sdt)  S,(s))  ]~ 

r( t, s) = O(S,(t))/Oh,(s) ( t > s )  
(1) 

where ( ... ) means an average over the stochastic process describing the 
dynamical evolution of the system at a temperature T=/3 -~ (starting 
with a random initial configuration) and [ ... ]av means an average over 
the quenched disorder. At thermal equilibrium these function are 
homogeneous, and related by the fluctuation-dissipation theorem relation 
req(l--s)=flOCeq(t--S)/OS. In general, to characterize off-equilibrium 
situations it is possible to introduce the "fluctuation-dissipation ratio" as 
the function 

r(t, s) 
x(t, s) = (2) 

fl OC(t, s)/Os 

It is convenient for the following analysis to change a bit the definition of 
this function. First we define a function g(q, t) as the time s such that 
C(t, s)= q, which is unique due to the monotonicity of C(t, s) with s. Then 
we consider the fluctuation-dissipation ratio at this time 

g(t, q) = x(t, g(q, t)) (3) 

The above-mentioned MFT makes a particular set of predictions for 
x(t, s) [and afortiori for .g(t, q)] in the limit t, s---, cr There are different 
ways in which one can take this limit, depending on the relation between 



Fluctuation-Dissipation Ratio in 3D Spin Glasses 751 

t and s. In ordinary equilibrating systems, the relevant procedure is to fix 
the difference t -  s = r to a finite value. This yields limiting functions Cas(z), 
ras(r). The correlation function Cas(r) decreases monotonically from the 
value 1 at r = 0 to a value that we call qEA for ~ ~ oo, and the FD relation 
is respected (x = 1). In any different limiting procedure that would imply 
t - s - - ,  oo one would find that the correlation function tends to qEA' 
In other words, for t, s ~ ~ all the observable dynamical effects are con- 
centrated in the finite-r region. In aging systems this does not happen: 
dynamical effects persist in regions of the plane (t,s) where the limit 
is taken differently. This is apparent in experiments (x) where important 
dynamical effects are observed on time scales ~ of the order of the "waiting 
time" (s). 

In mean-field spin glasses, dynamics takes place both in a region of 
time homogeneity where the FDT relation is respected and in an aging 
region. This was first theorized in ref. 7 and then verified by a numerical 
solution of mean-field off-equilibrium dynamical equations for a particular 
model in ref. 8. An ansatz which allows for a precise definition of the 
infinite-time limit in the homogeneous and aging regimes has been put 
forward in refs. 7-9. Without entering into the details of this limiting proce- 
dure, we just summarize some consequences of the analysis. The time- 
homogeneous regime is qualitatively similar to an equilibrium regime 
where l i m ~  Cas(r)=qEA, x(q) = 1 for qEA <q~< 1. 

In the aging regime the function C(t, s) decreases, for decreasing s, 
from qEA to  a value qmi. (qmi. = 0  for spin glasses in the absence of a 
magnetic field). The function .~?(t, q) tends, for any q in the interval 
['qmin, qEA], to a well-defined limit x(q). 

It turns out that the function x(q) is formally related to the inverse of 
the static Parisi function q~t.t(x), Xstat(q ). A nontrivial x(q) is found in these 
models which statically exhibit replica symmetry breaking. (~) In all cases 
in which the replica symmetry breaking is associated with a continuous 
qstat(X), we have x~ta,(q)= x(q). If the static qstat(X) is discontinuous, x(q) 
turns out to be different from its static counterpart. This is the case, e.g., 
in the p-spin spherical model, (7) where x(q) is a step function. However, in 
both cases, dx(q)/dq has all the properties defining a probability distribu- 
tion, as happens for dx~,~t/d q. At present there is not a complete physical 
comprehension of the relation between the static definition of x(q) and the 
dynamic one and of the fact that the latter is associated with a probability 
distribution. 

In this paper we extract the above-defined function x(q) from numeri- 
cal data obtained for the 3D Edwards-Anderson model via Monte Carlo 
simulations performed by one of us recently. (~2) The advantage of numeri- 
cal simulations compared to experiments is that while experimentally it is 
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very difficult to get direct information on the correlation function, in 
numerical simulations one can easily have access to both the correlation 
and response functions. 

The correlation function is measured directly in the course of 
simulations starting from a random initial condition, which corresponds 
to a rapid temperature quench from the paramagnetic phase. The 
response function is measured in thermoremanent magnetization (TRM) 
experiments: the system is allowed to age for a time t,,, in the presence of 
a small magnetic field h, then the magnetic field is cut off and the 
magnetization is recorded as a function of the time r measured starting 
from t .... We assume linear response conditions where the magnetization 
M ( r +  t,,,, t.,) is given by 3 

M(r  + t.., t,.) = h r(r + t.,, s) ds (4) 

Using (3), one can write 

h Ic(r+' , , ' , ' , , ' ) (r  + tw, q) dq 
M ( r +  t.,, t . , ) = ~  c(r+,,,,.o) (5) 

and exploiting the monotonicity of C this time with respect to r, we choose 
such that C(r+t . , , t , , , )=q  and write with obvious meaning of the 

symbols 

s t,.) + t.,, q') dq' M(q, t . , ) = ~  (r+t,,..o) (6) 

For infinite t .... assuming loss of memory of the initial condition, 
lim, . . . . .  C(r + t.., 0) ~ 0, one would have M(q) = (h/T) ~q dq' x(q'). In the 
following we will present simulation data for the function 

Z t w ~ o:9 

z(q, t . , ) = ~ M ( q ,  t.,) ' g(q) (7) 

in the 3D Edwards-Anderson model. Simulation data for the corre- 
sponding function in the Sherrington-Kirkpatrick model have been given 
in ref. 9. In order to understand our findings, let us discuss some simple 
scenarios for the function x(q). 

3 Note that we use a notation in which both the time arguments of M are measured starting 
from the quenching time t = 0. The standard notation would be M(r, tw). 
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1. Ergodic behavior in the whole phase space. In this case qEA = 0 
and x(q) is equal to one in the whole interval 0 ~< q ~< 1 and one finds the 
classical F D T  result 

x(q) = q (8) 

typical, e.g., of  paramagnetic  systems. 

2. Ergodic behavior in a confined component. Here the system 
relaxes to a nonzero qEg and the dynamics remains confined to a single 
valley; then x ( q ) =  O ( q - q E g )  and 

Z = O(q - qEg)(q -- qEA) (9) 

Such behavior is found, e.g., in ferromagnets in the low-temperature phase, 
where qZA is equal to the square of  the magnetization and this would also 
be the prediction for a spin-glass scenario like that proposed by Fisher and 
Huse. t4) 

3. Mean-field aging behavior. In this case two scenarios are found in 
the literature. In models with one step of  replica symmetry breaking 

x(q) = X O(qEA -- q) + O(q - qEA) 

z(q) = xO(qEA -- q)q + O(q -- qEA){q -- (1 -- X)qEA } 

while in models with continuous replica symmetry breaking x is an 
increasing function from zero at q = 1 to one for q = qEA and stays equal 
to that value for q > qEA- Correspondingly, 

z (q )=O(qEA- -q )  dq ' ' v (q ' )+O(q--qEh)  q--qEA + dq' x(q') (10) 

In the SK model near T c one finds t9) the linear shape x (q )=2aq  with 
a = I/2 and one obtains 

z(q) = O ( q E A  - -  q)aq 2 + O(q - q E A ) ( q  - -  q E A  -1- aqEg) 

Let us turn now to the presentation of  the simulation data. We stress 
that at finite times, C(t, s) and r(t, s) are regular functions, and the possible 
singularities in x(q) and Z should be smoothed in some crossover region. 
We use the data obtained in ref. 12, doing some additional runs where 
necessary. For  completeness let us recall the definition of  the model that we 
investigate: it is the three-dimensional Edwards-Anderson model defined 
by the Hamiltonian 

H =  - ~ Jo .a ,a j -h  ~ S, (11) 
(0") i 

822/79/3-.4-18 
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where ( t  j )  are nearest-neighbor pairs on a simple cubic lattice, S~= + 1 
are Ising spins, J,y are quenched random variables taking on the values + I 
and - 1  with equal probability, and h is an external magnetic field. In this 
model a phase transition has been observed at T ~  1.2 (]4~ (see, however, 
ref. 15 for a different point of view). We use single-spin-flip heat-bath 
dynamics with parallel sublattice update and calculate the spin- 
autocorrelation function C(r, t.,) (in zero field) and the thermoremanent 
magnetization M(r  + t.,, t.,) as defined in (4). The field h applied for a time 
t., before starting the measurement is small (h=0.1) ,  and we checked by 
looking at h = 0.05 and h = 0.2, too, that we are in the lineare response 
regime. Thus Z(r + t.., t . , )= T/h M(r  + t.,, t.,) is the magnetic relaxation 
function occurring in linear response theory. The lattice size used is N = 323 
and we made sure that finite-size effects were not significant. All data are 
averaged over at least 128 samples (i.e., different realizations of the disorder). 

In Fig. 1 we show a picture, analogous to that presented in ref. 13, 
that clearly shows the violation of the FDT relation between magnetization 
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Fig. I. The  quanti t ies X d , - 2 " ( r +  t,,., t,,,) (o) and f l [ l -  C ( r +  t,., t , ,)] ( . )  versus time t for 
different waiting times. ;t'dr the dc susceptibility, is a single fit parameter  for all wait ing times. 
The  temperature  is T = 0 . 7 .  Note  that  for the F D T  to hold both curves have to be identical. 



Fluc tua t ion-D iss ipa t ion  Rat io  in 3D Spin Glasses 755 

and correlation function as a function of  time. As long as r ,~ t,,. the F D T  
relation is fulfilled, 

Zar --X(z + t,v, t,,) = fl{ I -- C(r + t,,, t,,)} (12) 

where gdc is the equilibrium dc susceptibility (see, e.g., ref. 3). For  r>> tw 
this relation is obviously violated. 

In Fig. 2 we present the function x(q ,  t,.) for different waiting times 
and temperatures T =  0.8, 1, 1.5, 2. It is clearly seen in the T =  2.0 plot that 
after a short transient, g tends to the paramagnetic function g (q )  = q. In the 
plot of the T =  1.5 data we can see that the system has not equilibrated 
even after the largest waiting time tw = 10 5. At low temperature we clearly 
recognize a t,,-dependent linear part  in X at large q. The slope of  the linear 
part is indeed 1, as shown in Fig. 3, where we display z(q, t . . ) - q  for 
T =  0.8. F rom Figs. 2 and 3 one can extract an effective time-dependent EA 
parameter qEA(t,,) as the value of  q at which x(q) starts to depart from 
linearity. In this way we estimate at T =  0.8 for t , ,=  10 3, 10", and 10 5 the 
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Fig. 2. The function x(q, t,.) versus q for various temperatures. The waiting times are 
t .... 10 2 (o), 10 3 (A), 10 4 (I-]), and 10 5 (.). 
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Fig. 3. The function q-g(q,  t,,.) versus q for T= 0.8 and different waiting times. The function 
q-x(q, t,.) should be constant as long as the FDT is fulfilled. The line is only a guide for the 
eye. 

values qEA = 0.78, 0.75, and 0.72, respectively. It is clear that  these da ta  do 
not  allow for any extrapolat ion.  

The small-q par t  of  the curves can be reasonably  fitted with an arc of  
pa rabo la  x(q) = aq2; for t,. = 10 3, 10 4, and 10 5 the value of  a at T =  0.8 is 
roughly constant  and  equal  to a = 0.2. A linear fit of  the kind x(q)= xq 
gives much poorer  results. This seems to indicate a scenario more  similar 
to that  of SK-l ike cont inuous  replica symmetry  breaking than that  of  a 
one-step replica symmetry  breaking.  

In Fig. 4 finally we present x(q) as a function o f q  for t,,. = 105 and dif- 
ferent temperatures.  As expected, the apparen t  qEA paramete r  grows for 
decreasing temperatures.  On one hand  one definitely still observes a slight 
dependence of x(q, t,,) on the wait ing time t .... which means that  r igorous  
statements on the l imiting shape of x(q) and hence of x(q) hardly  can be 
made. On the other  hand  we do not  observe any tendency of  the curves 
x(q, t,,,) to approach  a form like (9) that  is character is t ic  for a system with 
only two pure states [no te  that  this would imply that  the whole small-q 
part ,  i.e., q < q E A ,  of  x(q, t,,,) has to come down to zero] .  

We leave to the reader  to judge if our  da ta  can be interpreted as an 
indicat ion for a nontr ivial  x(q) in three dimensions.  However ,  the 3D EA 
model  is known to be only marginal ly  critical; therefore it would  be highly 
desirable to perform the same kind of  investigation in four dimensions,  
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where a nontrivial static P(q) has already been reported from a finite-size 
scaling analysis. I ~ 61 

Concluding, we have analyzed in this paper the data for the correla- 
tion and the response functions in the light of a recent mean-field theory 
of aging phenomena. We have shown that at least insofar as the quantity 
x(q) is conderned, the behavior of the 3D EA model at the time scale we 
investigate agrees qualitatively with a mean-field-like behavior. One clearly 
sees a separation of the dynamics into a quasiequilibrium part, analogous 
to an equilibrium dynamics where the FD relation is respected, and an 
aging part where the FD ratio takes values different from zero and one. 
Rough estimates indicate that x(q) grows linearly with q for small q, a 
behavior reminiscent of the SK model. The time scales to which we have 
access prevent us from probing the asymptotic behavior of the system, and 
even from proving that aging phenomena do not gradually disappear for 
increasing waiting times. This question is related the one long debated of 
the existence of a sharp phase transition in the model, and more general in 
3D short-rang~e spin glasses. Although of fundamental theoretical impor- 
tance, due to the slowness of the relaxation process, it is certainly not the 
most interesting one from an experimental point of view. It could well be 
the case that even if the transition is absent and the aging is interrupted 
after some very long time, the mechanisms responsible for aging in mean 
field could be relevant for the 3D physics on experimental times. 
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